
Towards A Low-Cost Stateless 5G Core
Umakant Kulkarni
Purdue University

ukulkarn@purdue.edu

Amit Sheoran
AT&T Labs - Research

asheoran@research.att.com

Sonia Fahmy
Purdue University

fahmy@purdue.edu

Abstract—We propose an optimization to reduce the latency
incurred by a stateless 5G control plane. The key idea is to
avoid redundant database read operations. We achieve this by
reading the user’s state only once and sending it to successive
network functions in a chain. Experimental results show that this
optimization can reduce the total cost by 33% on average.

I. INTRODUCTION

Considering the time critical applications of 5G, the
telecommunications standards have set the upper limit on the
control plane (core) latency to be 10 ms [1]. At the same time,
the 3GPP standards recommend stateless 5G network func-
tions (NFs). In our recent work [2], we investigated two types
of statelessness, procedural and transactional, and proposed
a number of optimizations to mitigate the performance cost
of transactional statelessness. We found that sharing database
state among 5G functions reduces the cost of transactional
statelessness by an average of 10%.

In this poster, we propose a new optimization on top
of database sharing, where we reduce the number of read
operations to a single read operation. We achieve this by
sending the data to the next NF in a service function chain
(SFC) over the standard end-user state creation/modification
request. Our preliminary results indicate that this single-read
mechanism reduces the cost of transactional statelessness by
more than 33%, which is 22% more than the previously
proposed state-sharing optimization. We also show that how
simply replacing a database document instead of updating it
in-place can reduce the cost of transactional statelessness by
more than 6%.

II. REDUCING STATELESS NF LATENCY

With transactional statelessness, an NF stores the end-user’s
state after completing each individual transaction. Hence,
when an NF receives a trigger to modify the user’s state, it
first fetches its latest state from the database, then uses that to
process the triggered request and finally writes the modified
state back into the database.

The total cost of transactional statelessness is 4 × n mes-
sages, where n is the number of NFs in an SFC. This is
because we need 2× n messages for the write operation, and
2× n messages for the read operation. The goal of this work
is to reduce the 2 × n read cost to just two messages, by
taking advantage of the sequential execution of requests and

responses in an SFC which has the following properties. (1) A
transaction between two NFs consists of exactly one request
and the corresponding response. Procedures are executed as
a sequence of transactions. (2) All NFs except the last in an
SFC send a request to the next NF in an SFC on receiving
an event trigger. (3) Once the last NF receives a request, it
processes it and sends a response to previous NF in the SFC.
The responses propagate back to the first NF. (4) When an NF
receives the response for a request it sent, it stores the new
state to the database. Before then, it maintains the state in
the cache or main memory. (5) For a transaction between two
NFs, both NFs read the exact same state from the database.
This ensures that state is synchronized.

Since each NF reads the exact same state, we can avoid
redundant read operations. We take advantage of the serial
execution of transactions, so that only the first NF (NF1)
needs to read the user’s state from the database. NF1 can then
embed this data in the underlying 5G control-plane request.
The receiving side NF (NF2) extracts the data from the request
and uses it to process the remaining part of the request, as
shown in Figure 1. NF2 can then simply use the same data
and embed it into the request being sent out to the next NF
(NF3). NF2 need not perform another read operation from the
database, since the previously read data remains valid because
no other NF has written new data for that particular user.

The process of embedding the data into the requests con-
tinues until the last NF in the SFC. This reduces the number
of database read messages to just two: one corresponding to
the request from the first NF to the database and one to the
response from the database to the NF.

III. EVALUATION

We now compare the costs of transactional statelessness,
including the previously proposed state sharing optimization,
with the new embedding mechanism. We conduct our ex-
periments on CloudLab, where we create a network with
nine nodes, five of which constitute a Kubernetes cluster
with one master and four worker nodes. We deploy open5gs

v2.4.3 (an open-source 5GS C implementation) along with
mongoDB v5.0.3 on the cluster. The remaining four Cloud-
Lab nodes run UERANSIM v3.2.5 (a C++ open-source tool):
two nodes as two separate gNBs and two as UEs. All
nodes are of type m510, equipped with Intel Xeon D-1548
processor supporting x86 64 architecture consisting of 16
CPUs with maximum speed of 2 GHz. The nodes run on
5.4.0-77-generic kernel with Ubuntu 20.04 and Kubernetes978-1-6654-8353-7/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
Lo

ca
l a

nd
 M

et
ro

po
lit

an
 A

re
a

N
et

w
or

ks
 (L

A
N

M
A

N
) |

 9
78

-1
-6

65
4-

83
53

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
LA

N
M

A
N

54
75

5.
20

22
.9

82
03

93

Authorized licensed use limited to: National Chung Cheng University. Downloaded on March 28,2023 at 05:07:54 UTC from IEEE Xplore. Restrictions apply.

Quincy Peng

Quincy Peng

NF1
Event

Trigger Get data
Response

Process event trigger

Event triggered
request + read data

Store new state

Trigger
Response

Extract read data + recreate state machine
+ process event triggered request

Response with
new state

DBNF2

Response

Fig. 1: Embedding data in request

600 700 800 900 1000
Simultaneous Requests

5
6
7
8
9

10
11
12
13
14

Ti
m

e
(s

)

Embedding Read Data
All NFs Share Database
Transactional Stateless

Fig. 2: Transactional stateless
optimizations

Create SM
Context

PFCP Session
Establishment

N1-N2 Message
Transfer

PFCP Session
Modification

Update SM
Context

Transactions

−0.05

0.00

0.05

0.10

0.15

0.20

Re
la

tiv
e

Ti
m

e
(S

)

Embedding Read Data
All NFs Share Database
Transactional Stateless

Fig. 3: Time taken by each transaction

v1.23. We use Helm charts from the publicly available
repository opensource-5g-core-service-mesh to man-
age these cloud-native open5gs functions1.

We experiment with the UE-initiated PDU session estab-
lishment request procedure, defined in section 4.3.2.2 of [4].
We trigger this procedure through “UE registration,” which
involves communication between almost all functions within
the 5G system (UE, RAN, AMF, SMF, UPF, PCF, UDR,
UDM, NRF, NSSF and AUSF). We compare four alternatives:
(1) Fully transactionally-stateless NFs as the baseline, (2)
Our previously proposed optimization where NFs share the
database [2], (3) The proposed optimization of embedding read
data, and (4) Using the replace API. We vary the number of
simultaneous requests made between 100 and 1000, in steps of
100. We repeat each set of experiments ten times, and compute
statistics for successful runs.

Figure 2 shows that the baseline transactional statelessness
incurs the highest latency, followed by the state sharing
optimization. Our proposed embedding optimization yields
the lowest cost in terms of time taken to complete a 5G
control plane procedure. In the embedding optimization, each
NF sends additional data, and the serialization/de-serialization
of this data incurs additional processing cost. The total time
taken, however, is still the lowest. Sending a request to the
database to read a document and waiting for the response is
more expensive than serializing/deserializing additional data
and sending it. The average reduction in time for the em-
bedding optimization is 33% over the standard transactionally
stateless baseline, and 22% over the state-sharing optimization.
This saving can go up to 44% over transactionally stateless
baseline, and 29% over the state-sharing optimization.

Interestingly, these cost savings are not uniform across
transactions. Figure 3 shows the relative time between two
consecutive transactions, averaged over 100 users. A negative
value for the PFCP establishment transaction for fully trans-
actional statelessness shows that the SMF finished processing
the PFCP establishment message before the AMF finished
processing the create SM context message. In the state sharing
paradigm, multiple NFs try to access the user’s unique state in

1Our changes to the open-source tools are available [3].

the database, increasing simultaneous read/write operations on
an object. A similar behavior is seen in case of PFCP modifica-
tion, but not for the three other transactions. This implies that
the SMF-UPF (N4) interface has higher transaction times for
state sharing, because the SMF needs to serialize/deserialize
the (shared) data twice; once for REST and once for PFCP. We
can conclude that individual transaction times are influenced
by simultaneous database operations as well as the amount of
data and its encoding. The optimization proposed in this work
is best suited for the AMF-SMF (N11) interface.

We have also explored using an alternate database API.
Typically, an update request is sent to the database, with a
patched document consisting of modified or new fields as key-
value pairs [5]. The database checks a key-value pair against
the matched document ID, and if a key already exists, it
replaces that value. An alternative approach we explored is
sending a new document to replace the existing document.
Since the NF has already read the user’s state, it concatenates
the read state with the new state; i.e., patches the previously
read document with the updated key-value pairs. This reduced
the procedure completion time by up to 9%.

IV. FUTURE WORK

We have deployed a single microservice (container) for each
5G NF, and deployed all 5G NFs in a single namespace. As
future work, we plan to break down 5G control-plane signaling
cost with multiple microservices for each NF, in order to better
understand the overhead of inter-microservice communication
and state management as the number of microservices in an
SFC increases.

REFERENCES

[1] 3GPP, “Study on scenarios and requirements for next generation access
technologies,” Technical Report (TR) 38.913, 4 2022, version 17.0.0.
[Online]. Available: http://www.3gpp.org/DynaReport/38913.htm

[2] U. Kulkarni, A. Sheoran, and S. Fahmy, “The Cost of Stateless Network
Functions in 5G,” in Proceedings of the Symposium on Architectures
for Networking and Communications Systems, 2021, p. 73–79. [Online].
Available: https://doi.org/10.1145/3493425.3502749

[3] “GitHub,” https://github.com/UmakantKulkarni/LowCostStateless5G.
[4] 3GPP, “Procedures for the 5G System (5GS),” Technical Specification

(TS) 23.502, 6 2021, version 17.1.0. [Online]. Available: http:
//www.3gpp.org/DynaReport/23502.htm

[5] “MongoDB Manual,” https://www.mongodb.com/docs/manual/.

Authorized licensed use limited to: National Chung Cheng University. Downloaded on March 28,2023 at 05:07:54 UTC from IEEE Xplore. Restrictions apply.

